新能源汽车电驱动系统_新能源汽车电驱动系统维护证多少钱
大家好,今天我将为大家介绍一下关于新能源汽车电驱动系统的问题。为了更好地理解这个问题,我对相关资料进行了归纳整理,现在让我们一起来看看吧。
1.新能源电驱系统标准解读与拓展:电磁兼容性(二)
2.新能源汽车有哪些部件组成
3.新能源电驱动系统标准解读与拓展:电气间隙与爬电距离
4.新能源汽车电机驱动系统作用是什么
新能源电驱系统标准解读与拓展:电磁兼容性(二)
导语:在解读《电动汽车安全指南2019版》中,EMC安全已经被明确纳入其中,指南中5.5.3详细规定了电驱动EMC及防护措施;在《2020版新能源汽车国家强制标准即将发布》中,也提到唯一电驱动系统EMC安全标准:GB/T36282-2018《电动汽车用驱动电机系统电磁兼容性要求和试验方法》。在《电磁兼容性(一)》中,我们已经分析了电动车以及电驱动系统的电磁干扰来源,我们这次还是把电驱动作为干扰源,结合EMC安全相关标准,分析上次未研究完的问题。我们从以下几方面展开讨论:
1.电驱动系统的电磁干扰路径
2.电磁干扰频段测试
3.抑制干扰的方式
1.?电驱动系统的电磁干扰耦合路径
由于电驱动系统内辐射干扰主要是由于传导电磁干扰引起的,而且可以通过添加屏蔽等物理手段进行抑制,而传导干扰沿着导体进行传播,相比辐射干扰更难抑制。
这里我们谨遵毛爷爷的指导,抓主要矛盾,只分析传导干扰。传导干扰是通过所在系统中各种导体传输线,以电流、电压形式进行耦合传播的干扰。
在前面文章中已经提过电驱动中存在差模干扰和共模干扰(传送门:《新能源电驱系统标准解读与拓展:电磁兼容性(一)》),在分析干扰路径前,我们先要明白什么是差模干扰?什么是共模干扰?
差模干扰(Differential-mode):干扰电压存在于信号线及其回线(一般称为信号地线)之间,干扰电流回路则是在导线与参考物体构成的回路中流动。
共模干扰(Common-mode):干扰电压在信号线及其回线(一般称为信号地线)上的幅度相同,这里的电压以附近任何一个物体(大地、金属机箱、参考地线板等)为参考电位,干扰电流回路则是在导线与参考物体构成的回路中流动。
关于DM和CM,下图表示的很清楚了,供参考:
简单来说,差模干扰时信号线到信号线的回路干扰,共模干扰是信号线到地的回路干扰。
01?电驱动系统的差模干扰路径
IGBT开通关断期间感应出瞬态脉冲电压,在相线与电源线组成回路中产生电流,形成差模干扰回路。差模传导电磁干扰耦合路径示意图如下所示:
传播路径1,通过耦合到母线最终流回到电池;传播路径2,是产生的较高频的电流通过电机内部产生尖峰电压。电流1、电流2的和,就是逆变器产生的总体差模干扰电流。
02?电驱动系统的共模干扰路径
共模传导电磁干扰耦合路径示意图如下所示:
路径1,为开关器件IGBT处形成的干扰,在三相逆变桥臂上中性点的电位是规律性阶跃变化的,IGBT与散热器之间存在杂散电容,在IGBT开通关断的瞬间,产生的高频du/dt会通过其上寄生电容充放电,进而产生共模电流,最终通过输入电缆线回到逆变器形成共模干扰回路。
同时,研究指出,电机的定子绕组和电机机壳之间,也存在着较大的寄生电容,存在于电池、电机中性点上的共模电压也会通过上述寄生电容形成共模EMI电流,并通过高压线缆最终回到逆变器形成路径2。
电流1、电流2的和,就是逆变器产生的总体共模干扰电流。
以上,我们完成了电驱动电磁干扰源和干扰路径的分析,那么下一步看看敏感器件有哪些。我们只有知道了干扰频段的大小是多少,才能指导干扰到哪些器件,接下来我们看看如何测试干扰频段。
2.?电磁干扰频段的测试
传导干扰和辐射干扰如何进行测试?不同频段的振幅是多少?会不会影响到敏感期间呢?
《GB/T?36282》带着这些问题,我们看一下专门针对电驱动EMC的GB标准——《GB∕T?36282-2018?电动汽车用驱动电机系统电磁兼容性要求和试验方法》,带着满怀激动的心情点开了标准页面,BUT,GB/T36282-2018标准目录是这个样子,说好的传导发射呢。。。。。。。
《电动汽车安全指南》与《GB/T?18655》
不怕,我们再看《电动汽车安全指南2019版》涉及的电驱动EMC安全标准,在5.5.3.1中规定:
这下就没问题了,《GB/T36282-2018》要与标准《GB/T?18655-2018车辆、船和内燃机无线电骚扰特性用于保护车载接收机的限值和测量方法》相结合去看,而且,《GB/T?18655-2018》的标题提到了敏感器件:车载接收机。车载接收机多种多样,工作的频段范围非常广,标准中是怎么规定限值的呢?
传导电磁干扰测试
《GB/T?18655-2018》涉及零部件传导发射测试的章节如下图,共有两种测试方法:电压法与电流探头法。
测试方法以及限值在标准中写得很详细,喜欢童鞋可详细研读一下,这里不再过多介绍,我们直接上张测试照片:
传导电磁干扰测试平台,主要由电源、人工电源网络、接收器、电源钳、直流高压线缆、电驱动(或电机+逆变器+交流线缆)、测功机等部分组成。接收器可以通过LISN测得系统产生的传导电压,也可结合电流测得直流动力线缆单根电流和共模电流。
电机空载和带载分别测试正极电压传导,借用一下某大神的结果(来源于网络,若有侵权,请联系作者):
其中规定限值的参考标准为CISPR25,这是上述标准《GB/T?18655》英文版本,可以看出,很多频段都严重超标,需要找到响应的措施,抑制干扰。
(关于电磁干扰相关标准,后续会专题统一总结,敬请期待)
辐射电磁干扰测试辐射干扰途径因可以通过添加屏蔽等物理手段进行抑制,所以不做重点讲解,但是测试的环节不能少,电驱动系统辐射干扰如何测量呢?
这次先看《GB/T?18655-2018》的目录,标准中介绍了三种方法:ALSE(装有吸波材料的屏蔽室)法、TEM小室法、带状线法。ALSE法介绍非常详细,并对不同频率推荐使用了不同天线:
再看下《GB/T36282-2018》辐射干扰测:
测试方法出自《GB/T?18655-2010》,而且在30MHz~1000MHz只说明了用双锥天线测试(#我要你有何用。。。#)测试步骤不再详述,试验台与传导发射试验类似,多增加了接收天线,这里只针对30MHz-200MHz的测试,上图一张:
同样,测试完成的频谱图与标准中的限值相比较,找到不达标的频谱段,采取措施进行抑制。
3.?抑制干扰的方式
抑制电磁干扰是相对专业的问题,也由于篇幅的原因,这里简单说一下:
通过第1节的电磁干扰分析,可以看出,差模干扰电压是影响系统性能的最主要原因,因为差模干扰回路都是在驱动系统内形成的。通过调制开关通断时占空比的大小等方法可以对差模干扰路径?1?进行抑制。通过添加滤波器、添加屏蔽层等方法可以对流经电机内部的耦合差模干扰路径?2?进行抑制。
4.?展望
本篇主要分析了电驱动的电磁传导干扰的耦合路径和,依据GB/T?18655-2018介绍了传导发射和辐射发射的试验方法(GB/T36282-2018貌似不怎么靠谱),最后简单说了一下的电磁干扰的抑制措施。后续会对电驱动的抗干扰能力进行分析与相关测试标准的解读。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
新能源汽车有哪些部件组成
通常我们讨论新能源汽车,都绕不开车辆电驱动系统这个话题。作为新能源汽车的“心脏”,电驱动系统和燃油车的发动机起着同样的作用。电驱动系统和ECU单元的智能化性能,对于新能源汽车在动力性、舒适性、安全性等方面的更好表现是不可或缺的。除了驱动力,续航也是新能源汽车需要考虑的问题。现在新能源汽车的驱动方式通常有纯电动、混合动力和增程式。其次也要考虑使用电池,比如磷酸亚铁锂,燃料电池。每一辆新能源汽车都要考虑电驱动系统的输出和控制。一般来说,电驱动系统主要包括电机、驱动控制器和变速器;同时还应配合高压配电箱、车载充电器等配件。
新能源汽车刚发展的那几年,很多消费者并不是特别认可。最重要的问题是续航和动力,因为当时的电驱动系统比较基础,无法给你带来优越的动力性能,在续航方面也无法让消费者满意。更重要的是,消费者会习惯性地将新能源车与燃油车进行比较,自然容易产生抵触情绪。其实换个角度想,一个新技术和一个成熟的技术似乎没有太大的可比性。
好在新能源汽车是未来的发展趋势,在政府的大力支持下,电梯系统行业得到了推动。如今,电驱动系统的承载能力逐年提高,一个大规模的新市场正在逐步形成。根据NE时代的统计,2020年电机承载量约为123.5万台;2021年第一季度开发量达到50.15万套。此外,新能源汽车的销量占比开始从最初的A00车型发展到今天的A级和b级车,说明新能源汽车真正开始细分燃油车的市场。
在这样的市场发展下,电驱动市场未来的产业规模可以达到1000亿元。按照目前的销售趋势,如果2025年新能源汽车销量能达到850万辆,其带动的电驱动市场可能达到1100亿元。虽然只是预测,但按照目前的市场趋势,真的有可能达到这样的市场规模。但从目前的市场情况来看,电驱动系统行业目前的格局比较分散,目前大部分车企都采用自己的供货模式,占据了很大的市场份额。
比如蔚来汽车,从品牌创立至今,一直坚持双电机的策略。为了更好的R&D和制造,蔚来在2015年成立了XPT蔚来驱动技术有限公司(简称XPT蔚来)。通过技术的迭代更新,XPT蔚来驱动技术有限公司至今已为蔚来生产了超过30万台电机。
在最新的电驱动系统中,XPT蔚来驱动技术有限公司也尝试了碳化硅的研究,并计划在消费者期待的ET7上投入使用。这是蔚来汽车非常重视的发展方向,因为他们知道电驱动系统对汽车品牌的发展非常重要。除了解决电池寿命和功率的问题,还体现了高集成度和低温性能的特点,从而进一步解决当前电驱动行业的各种问题,为用户带来更多至关重要的利益。
总结:新能源汽车行业电气系统的研发将是该行业未来发展的核心方向。在蔚来汽车的引导下,会有越来越多的新能源品牌投入到电驱动系统的研究中,新能源汽车产业的变革会慢慢到来,值得我们继续期待!
百万购车补贴
新能源电驱动系统标准解读与拓展:电气间隙与爬电距离
新能源汽车有哪些部件组成新能源汽车的组成部分是:
1.电驱动系统:包括电子控制器、功率变换器、电机、机械传动装置和车轮;
2.供电系统:包括电源、能量管理系统和充电器;
3.辅助系统:辅助电源、动力转向系统、导航系统、空调、照明和除霜装置、雨刮器和收音机。
新能源汽车是指使用汽油、柴油以外的燃料作为动力来源的车辆,分为:
1.混合动力电动汽车,使用传统燃料和非常规燃料作为能源;
2.纯电动汽车,其动力源依靠电机发电;
3.燃料电池电动汽车,以氢燃料为能源。
新能源汽车电机驱动系统作用是什么
导语:在电动汽车中,电机和电机控制器都属于B级电压电机和电机控制器的电气间隙和爬电距离属于电驱动系统安规(Production?Compliance?)的重要内容,同时,这两项内容对电驱动总成的可靠性有着很重要的影响。本文重点阐述下面四个问题,相信读完本文,这四个问题会有答案:
1.?什么是电气间隙、爬电距离?
2.?电气间隙和爬电距离参考标准有哪些,影响因素有哪些?
3.?如何确定电气间隙、爬电距离?
4.?电气间隙和爬电距离如何验证?
1.?什么是电气间隙、爬电距离?
在不同的标准和材料里的表述略有不同,参考几个标准里的定义,笔者给出下面的定义:
电气间隙?两相邻导体或一个导体与可导电外壳沿空气测量的的最短距离。
爬电距离?两相邻导体或一个导体与可导电外壳沿固定绝缘表面测量的的最短距离。
可以简单的理解,电气间隙是一个带翅膀的蚂蚁,飞的最短距离,而爬电距离是一个蚂蚁爬的最短的距离。电气间隙和爬电距离在具体计算时,涉及很多场景,具体情况要具体分析。下面两种场景,爬电距离和电气计算的方法。
2.?电气间隙和爬电距离参考标准有哪些,影响因素有哪些?
当前没有专门针对电动车高压部件的电气间隙和爬电距离的参考标准,现在行业内参考的标准主要是工业产品的一些标准,这些标准主要来自于IEC,GB一般也直接引用,具体如下:
针对电气间隙和爬电距离的影响因素,主要涉及工作电压和工作环境(参见GB/T?16935)。在设计时,两者需要同时考虑,同时满足。影响因素上这两者存在差异性。
3.?如何确定电气间隙、爬电距离?
如下两张图,基于GB/T?16935展示了确定电气间隙和爬电距离的方法及流程。对于电机在GB?14711-2013?中小型旋转电机通用安全要求对于电机的电气间隙和爬电距离也有要求,可以参考。
为了阐述清楚确定电气间隙、爬电距离的流程,需要对于一些主要的专业名词进行解释和说明,如下表供参考。
4.?电气间隙和爬电距离的验证
一般可以对电气部件进行耐电压和绝缘电阻测试来验证电气间隙,对于电机控制器和电机有不同的测试方法,具体参见之前的文章解读:《新能源电驱系统标准解读与拓展:绝缘电阻》和《新能源电驱系统标准解读与拓展:耐电压测试》,需要说明的是测试通过不一定就代表电气间隙和爬电距离一定没问题,环境气候变化对于绝缘性能影响较大,试验室条件不能涵盖所有整车应用场景。一些耐久类的试验如带载温变循环试验(PTCE),高温耐久(HTOE)需要比对试验前后及试验中的一些绝缘性能来判断电气间隙和爬电距离设计的是否合理。
5.?拓展
开篇放了一个中国部分地区海拔分布图,而本文讲的电气间隙和爬电距离,这有什么关联呢?相信通过前面4个部分的叙述,读者已经有答案。整车在设计的时候对于目标市场是需要定义的,比如目标市场只是江浙沪,海拔都不到1000米,与目标市场是贵州、四川、西藏等地,对于电机和电机控制器的设计是有明显差异的。
集成化、一体化、高功率密度是当前电驱动系统发展的方向,如何保证有限的空间有足够大的电气间隙和爬电距离?之前国内某合资厂的某款接近批产的控制器因为电气间隙太小导?新能源电驱动系统标准解读与拓展:电气间隙与爬电距离致电机控制器IGBT模块打火烧损,由此可见电气间隙和爬电距离对于电驱动系统的安全性、可靠性是如此的重要!
最后说明下如果空间紧凑,电气间隙和爬电距离无法满足要求,要保证足够的绝缘性能,是可以通过增加挖空、加强筋、涂三防漆或涂胶等方式来解决的。当前这些可能对于成本带来一些压力。
最后做个统计,臭皮匠试验室暂定年底前举办一次线下培训交流会,人数不超过20,地点在上海,培训主题:电动汽车三合一电驱动系统标准解读与试验开发。
具体暂定以下几方面内容:1)结合项目经验,从整车需求角度,对三合一系统试验标准进行梳理,建立试验标准思维导图;2)理解FMEA与试验的关联性;3)讲解项目开发不同阶段下的试验如何分布;4)路谱的采集与转化,以及对三合一系统和部件的影响;5)对系统疲劳耐久、环境适应性、高低压电气负荷适应性中的关键点、难点做解读。
详细交流会信息后续会正式推送给大家。感兴趣的可以私信。
最后,感谢大家一直以来的支持,感谢有你!
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
太平洋汽车网驱动电机系统是纯电动汽车三大核心部件之一,是电动汽车的动力来源。驱动电机系统是直接将电能转换为机械能的部分,决定了电动汽车的性能指标。驱动电机系统由驱动电动机(DM)和驱动电机控制器(MCU)构成,通过高低压线束、冷却管路,与整车其他系统作电气和散热连接。整车控制器根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器驱动电车控制器发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。
电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。
二、汽车驱动电机系统的组成部分:
1、驱动电动机:
(1)永磁同步电机:一种典型的驱动电机,具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器,来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。
(2)旋转变压器:检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱动电机旋转。
(3)温度传感器:作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。
2、驱动电机控制器:
(1)驱动电机控制器对所有的输入信号进行处理,并将驱动电机控制系统运行状态信息通过网络发送给整车控制器。驱动电机控制器内含故障诊断电路,当电机出现异常时,达到一定条件后,它将会激活一个错误代码并发送给VCU整车控制器,同时也会储存该故障码和相关数据。
(2)驱动电机控制器主要依靠电流传感器、电压传感器和温度传感器来进行电机运行状态的监测,根据相应参数进行电压、电流的调整控制以及其它控制功能的完成。
(3)电流传感器用于检测电机工作实际电流,包括母线电流、三相交流电流。
(4)电压传感器用于检测供给电机控制器工作的实际电压,包括动力电池电压、12V蓄电池电压。
(5)温度传感器用于检测电机控制系统的工作温度,包括IGBT模块的温度。
三、新能源汽车驱动电机系统的工作过程:
1、D挡加速行驶驾驶员挂D挡并踩加速踏板,此时挡位信息和加速信息通过信号线传递给整车控制器,整车控制器把驾驶员的操作意图传递给驱动电机控制器,再由驱动电机控制器结合旋变传感器信息(转子位置),进而向永磁同步电动机的定子通入三相交流电,三相电流在定子绕组的电阻上产生电压降。
(图/文/摄:太平洋汽车网问答叫兽)
好了,今天关于“新能源汽车电驱动系统”的探讨就到这里了。希望大家能够对“新能源汽车电驱动系统”有更深入的认识,并且从我的回答中得到一些帮助。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。